Structure Reports

Online
ISSN 1600-5368

Sandhya M. Vyas, ${ }^{\text {a }}$ Sean Parkin, ${ }^{\text {b }}$ Larry W. Robertson ${ }^{\text {a }}$ and Hans-Joachim Lehmler ${ }^{\text {a* }}$
${ }^{\text {a }}$ The University of lowa, Department of Occupational and Environmental Health, 100 Oakdale Campus, 124 IREH, lowa City, IA 52242-5000, USA, and ${ }^{\text {b }}$ University of Kentucky, Department of Chemistry, Lexington, KY 40506-0055, USA

Correspondence e-mail:
hans-joachim-lehmler@uiowa.edu

Key indicators

Single-crystal X-ray study
$T=90 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.049$
$w R$ factor $=0.131$
Data-to-parameter ratio $=18.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,5-Dichloro-4'-methoxybiphenyl

The dihedral angle between the benzene rings in the title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{1}$, is 59.92 (9) ${ }^{\circ}$.

Received 14 August 2006 Accepted 18 August 2006

Comment

Polychlorinated biphenyls (PCBs) are an important class of persistent environmental contaminants (Robertson \& Hansen, 2001). They are metabolized in vivo to hydroxylated and other metabolites. The three dimensional structure of PCBs and their metabolites is determined by the dihedral angle between the two benzene rings. The dihedral angle is thought to be an important determinant of the binding affinity of hydroxylated PCBs to various proteins (Lehmler et al., 2002). We synthesized 2,5-dichloro-4'-methoxybiphenyl, a methylated analog of a hydroxylated PCB, as part of our ongoing research into the phase II metabolism of hydroxylated PCBs (Tampal et al., 2002; van den Hurk et al., 2002; Wang et al., 2005; Wang et al., 2006). The crystal structure of this PCB derivative showed a dihedral angles of $59.92(9)^{\circ}$, which is slightly larger than the calculated dihedral angle of 57.7° in aqueous solution [calculated with MM2 using GB/SA water solvent continuum as implemented by MACROMODEL 5.0 (Still et al., 1990)].

(I)

According to our review of the literature, the experimental dihedral angles for mono-, di-, tri- and tetra-ortho Cl-substituted PCB derivatives are 47-51 (Kania-Korwel et al., 2004; Lehmler et al., 2001; McKinney \& Singh, 1988; Sluis et al., 1990), 59-75 (Vyas et al., 2006; Miao et al., 1997; Rissanen et al., 1988a; Rømming et al., 1974; Singh et al., 1986), 82-83 ${ }^{\circ}$ (Lehmler et al., 2005; Rissanen et al., 1988b) and 84-87 (Pedersen, 1975; Shaikh et al., 2006; Singh \& McKinney, 1979), respectively. As a result of crystal packing effects, the calculated dihedral angles of these PCB derivatives (viz., 57.7°, $73.0^{\circ}, 89.8^{\circ}$ and 89.9° for mono-, di-, tri- and tetra-ortho Clsubstituted PCB derivatives, respectively), in contrast to the title compound, are larger than the solid state dihedral angles. Overall, the title compound and other PCB derivatives may have some conformational flexibility when interacting with proteins, a fact that may be helpful in determining threedimensional quantitative structure-activity relationships for a variety of phase II enzymes.

Experimental

The title compound, (I), was synthesized in 75% yield by the Suzuki coupling of 4-methoxyphenylboronic acid and 2,5-dichlorobromobenzene (Kania-Korwel et al., 2004). Colorless blocks were obtained upon crystallization from methanol.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}$
$M_{r}=253.11$
Monoclinic, $P 2_{1} / n$
$a=9.4758(3) \AA$
$b=14.2682(5) \AA$
$c=9.5562(3) \AA$
$\beta=116.8711(15)^{\circ}$
$V=1152.52(7) \AA^{\circ}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.459 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.54 \mathrm{~mm}^{-1} \\
& T=90.0(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.18 \times 0.16 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: multi-scan SCALEPACK (Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.91, T_{\text {max }}=0.94$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.131$
$S=1.02$
2637 reflections
146 parameters

Figure 1
View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Kania-Korwel, I., Parkin, S., Robertson, L. W. \& Lehmler, H.-J. (2004). Acta Cryst. E60, o1652-o1653.
Lehmler, H.-J., Parkin, S. \& Robertson, L. W. (2001). Acta Cryst. E57, o111o112.
Lehmler, H.-J., Parkin, S. \& Robertson, L. W. (2002). Chemosphere, 46, 485488.

Lehmler, H.-J., Robertson, L. W. \& Parkin, S. (2005). Acta Cryst. E61, o3025o3026.
McKinney, J. D. \& Singh, P. (1988). Acta Cryst. C44, 558-562.
Miao, X., Chu, S., Xu, X. \& Jin, X. (1997). Chin. Sci. Bull. 42, 1803-1806.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307-326. New York: Academic Press.

Pedersen, B. F. (1975). Acta Cryst. B31, 2931-2933.
Rissanen, K., Valkonen, J. \& Mannila, B. (1988a). Acta Cryst. C44, 682-684.
Rissanen, K., Valkonen, J. \& Mannila, B. (1988b). Acta Cryst. C44, 684-686.
Robertson, L. W. \& Hansen, L. G. (2001). Recent advances in the environmental toxicology and health effects of PCBs. Lexington: University Press of Kentucky.
Rømming, C., Seip, H. M. \& Oymo, I. M. A. (1974). Acta Chem. Scand. Ser. A, 28, 507-514.
Shaikh, N. S., Parkin, S. \& Lehmler, H.-J. (2006). Acta Cryst. E62, o662-o663.
Sheldrick, G. M. (1994). SHELXTL/PC. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97, SHELXS97 and SHELX97-2. University of Göttingen, Germany.
Singh, P. \& McKinney, J. D. (1979). Acta Cryst. B35, 259-262.
Singh, P., Pedersen, L. G. \& McKinney, J. D. (1986). Acta Cryst. C42, 11721175.

Sluis, P. van der, Moes, G. W. H., Behm, H., Smykalla, C., Beurskens, P. T. \& Lenstra, A. T. H. (1990). Acta Cryst. C46, 2169-2171.
Still, W. C., Tempczyk, A., Hawley, R. C. \& Hendrickson, T. (1990). J. Am. Chem. Soc. 112, 6127-6129.
Tampal, N., Lehmler, H.-J., Espandiari, P., Malmberg, T. \& Robertson, L. W. (2002). Chem. Res. Toxicol. 15, 1259-1266.

Vyas, S. M., Parkin, S. \& Lehmler, H.-J. (2006). Acta Cryst. E62, o2905-o2906.
Wang, L.-Q., Lehmler, H.-J., Robertson, L. W., Falany, C. N. \& James, M. O. (2005). Environ. Health Perspect. 113, 680-687.

Wang, L.-Q., Lehmler, H.-J., Robertson, L. W. \& James, M. O. (2006). Chem. Biol. Interact. 159, 235-246.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

